Key Directions of Mastering Docking and Scoring Approaches

Oleg Stroganov¹, Fedor Novikov¹, Viktor Stroylov¹, Val Kulkov² and **Ghermes Chilov**¹

¹ MolTech Ltd, Russian Federation, ² BioMolTech Corp, Canada

ACS Fall Meeting, Boston, USA

22 August 2010

Current state of docking approach

Plan of the presentation

- Sampling errors
- Scoring errors
- Novel concepts in docking and scoring

Sampling errors

Statistics of sampling errors

- 407 protein-ligand complexes were used in the docking success rate benchmark
- 32 out of 63 docking failures were attributed to the sampling errors*

Ligand NFRB	N structures	% of errors
00-05	246	2.4
06-10	103	6.8
11-15	42	26.2
>15	16	43.8
all	407	7.6

* J. Chem. Inf. Model., 2008, 48, 2371-2385

Examples of sampling errors

Approaches to minimize sampling errors

- Restraints on particular pairs of atoms
 - Rigid bond
 - Specification of protein and ligand atoms required
- Energy traps for particular interactions
 - Soft bond
 - Specification of ligand atom is not required
- Protein-specific optimization of docking settings
 - Dependence of the docking algorithm settings on the protein and ligand properties

Geometric restraints during ligand docking*

Namo DDB	חו פחס		Constraints		Docking success rate, %		spoodup	
Name	טו פטי	INFND	Ν	Туре	default	constrained	speedup	
uPA	1gj8	5	1	Q**	75%	100%	0,84	
DHFR	1dhf	7	1	Q	85%	100%	1,17	
Coagulation factor X	1g2l	9	1	Q	70%	100%	1,18	
ACE	2oc2	13	1/1	Q/Hb ^{***}	50%	95%	1,67	
HIV-1 protease	1b6p	15	1	Hb	70%	100%	1,67	
Plasmepsin-2	1lf2	15	1	Hb	25%	75%	1,25	
HIV-1 protease	2a4f	15	2	Hb	80%	100%	1,05	
PPAR-delta	2awh	15	1/1	Q/Hb	30%	60%	1,15	
Protein D7	3dzt	15	2	Hb	85%	100%	1,44	
HIV-2 protease	1hii	16	3	Hb	30%	45%	1,10	
Cytochrome P450 102	1jpz	16	1	Hb	10%	70%	1,34	
HIV-1 protease	1hxw	18	1	Hb	40%	85%	1,43	
MMP-3	1hfs	18	1	Me ^{****}	25%	95%	1,57	
FTase-alpha	1jcq	19	1/1	Me/Q	40%	95%	1,22	
Trans-sialidase	1s0i	22	2	Q	35%	75%	1,25	

* Lead Finder v. 1.1.14; ** charged H-bond interaction; *** neutral H-bond interaction; **** metal coordination

Energy traps during ligand docking

Efficiency of energy traps in ligand docking

- 16 protein-ligand complexes with NFRB>14
- 1-2 energetic traps per protein with X-fold increased potential

	N of docked structures	Average docking time, s
No constraints	7	450
5-fold increase	9	456
10-fold increase	10	455
50-fold increase	10	450

Efficiency of energy traps

- Beta-lactamase tough target of the DUD test set*
- ROC ~ 0,5 for 6 well-known docking programs**
- 2 cognate ligands out of 21 are docked correctly by Lead Finder

* J. Med. Chem. 2006, 49, 6789-6801

** J. Chem. Inf. Model. 2009, 49, 1455–1474

Efficiency of energy traps in virtual screening

Protein-specific docking algorithm

- Adjustable settings of the docking algorithm
 - Initial pool of individuals
 - Number of generations
 - Number of individuals in the generation
 - Niche size and thickness
- Parameters influencing settings of the docking algorithm
 - Number of ligand freely rotatable bonds
 - Active site size
 - Number of H-bond donors and acceptors in ligand

Protein-specific docking algorithm

• The main contribution to the customized docking algorithm comes from the number of H-bond donors and acceptors in ligand

	Minimum settings	Account of NFRB	Account of H-bonds	Account of active site size	Default settings	Maximum settings
Docking success rate, %	32.7	44.2	58.9	64.5	66.0	68.2
N of correctly docked structures	25	39	60	68	68	71
Average docking time, s	18	42	40	45	79	206

Scoring errors

Statistics of scoring errors

• Accuracy of binding error estimation

	N of structures	RMSD, kcal/mol	R ²
CSAR set	345	1.98	0.57
Lead Finder set	285	1.80	0.49
All	630	1.90	0.53

• Statistics of scoring errors in docking (407 protein-ligand complexes)

ddG, kcal/mol	N of structures	% of errors
<0.5	18	58
0.5-1.0	10	32
>1.0	3	10

Approaches to minimize scoring errors

- Force field parameterization and refinement
 - ab initio approaches
- Scoring function customization
 - Protein- and/or ligand-based customization
 - Regime-based (docking, screening,...) customization
- Explicit treatment of the system
 - Protein flexibility
 - Explicit water
 - Free energy calculations

Repairing scoring errors not related to scoring function

- Dynamical approaches (FEP, TI...)
 - Thermodynamic averaging along dynamic trajectory
- Stochastic approaches (Monte Carlo...)
 - Thermodynamic averaging along stochastic trajectory
- Graph-theoretical approach
 - Direct asymptotic evaluation of partition functions and thermodynamic averages

TSAR – a new algorithm for multistate calculations

Thermodynamic Sampling of Amino acid Residues

TSAR – a new algorithm for multistate calculations

TSAR – a new algorithm for multistate calculations

Initial graph of ribonuclease H, complexity 10¹⁶⁶

Final graph, complexity 10⁷

- ~10⁴ Ligand states, local/global sampling
- ~10¹-10³ States per Residue, local/global sampling
- Simplified scoring function for energy calculations

$$\Delta\Delta G = RT \ln \frac{e^{-E_{Optimum_State}}}{\sum_{Ligand_{States}} e^{-E_{State}}}$$

$$\Delta\Delta G = RT \ln \frac{\sum_{States_Ligand_ON} e^{-E_{State}}}{\sum_{States_Ligand_OFF}} - E_{Optimum_State}$$

$$\Delta G = E_{Docking} + \alpha \cdot \Delta \Delta G$$

Trypsin inhibitor (PDB 1tnj)

* Nat. Struct. Biol. 1994, 1(10), 735-743 ** Lead Finder v. 1.1.14 Protein-Ligand ΔG of binding, (kcal/mol):

- Experimental -2,7*
- Calculated -5,4**
- TSAR $\Delta\Delta G$ = 0,22 (ligand flexibility)

= 0,7 (active site flexibility)

Complexity of a graph ~10⁷

Protein-Ligand ΔG of binding, (kcal/mol):

- Experimental -7,9*
- Calculated -10,8**
- TSAR $\Delta\Delta G$ =

-11,2 (ΔG with simplified scoring function) –

-18,2 ($\mathsf{E}_{\mathsf{optimum}}$ with simplified scoring function)

= 7 (~40% of $E_{optimum}$)

- * J. Am. Chem. Soc. 1997, 119, 12471-12476
- ** Lead Finder v. 1.1.14

Complexity of a graph:

- before reduction ~10¹⁶
- after reduction ~107

What about energy underscoring?

Histamine bound to lipocalin (PDB 1bu1)

Protein-Ligand ΔG of binding, (kcal/mol):

- Experimental -11,3*
- Calculated^{**}
 - -5,9 (no explicit water)
 - -9,1 (with explicit water)

* J. Biol. Chem. 2008, 283(27), 18721-18733 ** Lead Finder v. 1.1.14

Further improvements of thermodynamic averaging approach

- More accurate scoring function
- Explicit treatment of water
 - mediating ligand binding
 - displaced by ligand
- Loss of ligand's degrees of freedom